2006-2010年浙江省高等数学(微积分)竞赛工科类试题整理

时间:2022-11-24 12:56:37 作者:壹号 字数:3731字

2006浙江省高等数学(微积分)竞赛试题(解答)

一、 计算题(每小题12分,满分60分)

1、计算limn??n???x?nx???1???n??e??.

????nx?x??x?解:

?lim??n?x?????1??????x?x?x??n????n??n??1???ex???lim????n??ne????1? ???n????????e????????????xn??n??????1?x?x??e????1?x?x??e?limn??nex????1??n????1???limx?n?n??nex

?e?e?????????????n??1?x?x1?x2ex?1lim?n??e?n??x?x2ex?1lim?1?t?t?et?0t

nt?ln(1?t)010?1?t?t?1?t2x?1t2?xelimt?01 ?x2exlimt?(1?t)ln(1?t)t?0(1?t)t2 ?x2exlimt?(1?t)ln(1?t)t?0t2

00?x2exlim1?1?ln(1?t)t?02t

??x2ex2。

2、求48?1?x?xx(1?x8)dx.

解: ?1?x4?x8x4?x82?x4x(1?x8)dx?11?2?x2(1?x8)dx2?1?1?x2x(1?x)4dx

1

?14?1?x?x2424x(1?x)dx?214?1?x?x22x(1?x)dx

1??3???1?ABC?1?212????????dx?dx???4?x?1xx?1?4?x?1xx?1????1?31??ln(x?1)?lnx?ln(x?1)??C4?22??38ln(x?1)?2

??114lnx?18ln(x?1)?C.

?ex23、求?0dy?y??ey??x12??dx. ????dx???11解:

?ex2ydy?e?0?y?x??11?10dy?1yex2xdx??10dy?edxy1y2

???10dx?x2x0ex2xdy??dy?edx0yy2

xedx?3x2?10edx??10(1?y)edy?y2?10e?12.

4、求过(1,2,3)且与曲面z?x?(y?z)的所有切平面皆垂直的平面方程.

解:令F(x,y,z)?x?(y?z)3?z

则Fx?(x,y,z)?1,Fy?(x,y,z)?3(y?z)2,F?(x,y,z)??3(y?z)z2?1

令所求平面方程为: 在曲面z?则A?C?0A(x?1)?B(y?2)?C(z?3)?0,

x?(y?z)3上取一点(1,1,1),则切平面的法向量为{1,0,?1},

x?(y?z)?03在曲面z?上取一点(0,2,1),则切平面的法向量为{1,3,?4},

则A?3B?4C解得:

.

x?y?z?6A?B?C即所求平面方程为: .

2

二、(15分)设f(x)?e解: 当x?0, 当x?0,

0x?x36,问f(x)?0有几个实根?并说明理由.

e?0?xx36

x3e?0且ex的增长速度要比

36来得快!所以f(x)?0无实根.

三、(满分20

解: 当

??n?分)求??x??n?1??中x20的系数.

333x?1时,

??x??1?n?3 x???x????????1?x??1?x??n?1??1???1?x??x3??3???xn????x?????2?n?0?2n?2

?3x3?2?n(n?1)xn?2

??n?故??x??n?1?中x20的系数为171.

y?z?R222四、(20分) 计算?Cxyds,其中C是球面x2?的交线.

解: ?C(x?y?z)2ds??C(x2?而?C(x?y?z)2ds?0,

与平面x?y?z?0y?z)ds?2?(xy?yz?zx)ds

22C??C(x?y?z)ds?xyds?222?CRds?2?R23,

C?Cyzds??Czxds,

故?Cxyds???R33.

n五、(20分)设a1,a2,?,an为非负实数,试证:?aksinkxk?1?sinx的充分必要

条件为?kakk?1n?1.

3

证明:必要性 由于?aksinkxk?1nn?sinx,则?akk?1nsinkxx?sinxx,

x?0

?limx?0?k?1aksinkxxn??k?1kak?limsinxxx?0?1.

nn充分性;要证明?aksinkx?k?1sinx,只需证明:

?ak?1ksinkx?1sinx,这里

sinx?0,若sinx?0,不等式显然成立;

即只需证明: ?akk?1nsinkxsinxsinkxk?1,

而?akk?1nsinkxsinxn??ak?1sinx,?kakk?1n?1

故只要说明: 当ksinkxsinx?k,即sinkx?ksinx,

?1时,显然成立;

?n时,也成立,即sinnx?nsinx假设当k当k;

?n?1时, sin(n?1)x?sin(nx?x)?sinnxcosx?sinxcosnx?sinnx?sinx?(n?1)sinx.

1sinnx?nsinx 六、(15分)求最小的实数c,使得满足?0f(x)dx?1的连续函数f(x)都有

?10f(x)dx?c.

解: ?01f(x)dx??f(x)dx?2?tft()dx0011011?2?ft()dx01?2,

23?43 取y?2x,显然?0f(x)dx?1,而?f(x)dx?1?102xdx?2?,

取y?(n?1)xn,显然?0而?10f(x)dx?1,

f(x)dx??10(n?1)?x?ndx?2?n?1n?2?2,n??,

故最小的实数c?2.

4

2007浙江省高等数学(微积分)竞赛试题(解答)

一.计算题(每小题12分,满分60分) 1、求?x9x5dx.

?1解: 95?x5dx?1xdx5?1t

x?15?x5?15?dtt?1u?t?1?1115?u?1udu?5?udu?15?udu

…… 此处隐藏54字 ……

(1?x)x?(1?2x)2xlim(1?x)x?(1?2x)2xx?0sinx?limx?0x

00?lim?1x?0?(1?x)x?1ln(1?x)?1???2x?1ln(1?2x)???x(x?1)x2??(1?2x)???1)??x(2x2x2??? ?00?lim?1?x?(x??1?2x?(2x?1)ln(1?2x)??x?0?(1?x)x1)ln(1?x)??2x?x2(x?1)??(1?2x)???2x2(2x?1)??? ?11?lim(1?x)x?x?(x?1)ln(1?x)??2xx?0??x2(x?1)??lim(1?2x)2x?(2x?1)ln(1?2x)??x?0??2x2(2x?1)???elimx?(x?1)ln(1?x)?(2x?1)ln(1?2x)x2?elim2xx?0x?02x2

00?elim?ln(1?x)ln(1?2x)x?02x?elim?2x?04x

??e?e?e22.

3、求bp的值,使?a(x?p)2007e(x?p)2dx?0.

5